
VoiceRestore - Flow-Matching Transformers for

Universal Audio Quality Restoration

Stanislav Kirdey contact@stankirdey.com

September 6, 2024

Abstract

We present a novel approach to audio quality restoration using flow-
matching transformers, capable of addressing a wide range of degra-
dations including reverberation, noise, compression artifacts, and low
sampling rates. Our method adapts recent advances in flow matching
and transformer architectures to create a unified model for diverse au-
dio restoration tasks. The proposed system leverages conditional flow
matching and classifier-free guidance to learn a mapping from degraded
to high-quality audio. Experimental results demonstrate state-of-the-
art performance across multiple degradation types, outperforming spe-
cialized models in terms of both objective metrics and subjective qual-
ity. The proposed method shows particular strength in generalizing to
unseen degradation combinations, making it a promising solution for
real-world audio restoration scenarios.

1 Introduction

Audio quality degradation is a pervasive issue in various applications, from
telecommunications to archival audio restoration. Common degradations
include reverberation, background noise, compression artifacts (e.g., from
lossy encoding), and quality loss due to low sampling rates. Traditional
approaches to audio restoration often focus on specific types of degradation,
leading to a proliferation of specialized models and techniques.

Recent advancements in deep learning have shown promise in addressing
multiple audio degradations simultaneously [1]. However, these methods
often struggle with generalization to unseen degradation combinations or
require complex architectures and training procedures.

Our work is inspired by the recent Embarrassingly Easy Text-to-Speech
(E2TTS) system introduced by Wang et al. [2]. While E2TTS focuses on
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speech synthesis, we adapt its core ideas of flow matching and transformer
architectures to the task of universal audio restoration. This approach allows
us to address a wide range of degradations within a single, unified model.
Our approach leverages self-supervised learning, where all degradations are
generated in real-time during training. This allows for a more diverse and
dynamic training set, enhancing the model’s ability to generalize to various
degradation types and severities.

By conditioning on the degraded audio input instead of text, our model
learns a unified representation capable of addressing a wide range of audio
quality issues. The main contributions of this work are:

• A unified flow-matching transformer architecture for multi-degradation
audio restoration, adapted from E2TTS

• State-of-the-art results on a comprehensive benchmark covering rever-
beration, noise, compression artifacts, and low sampling rate restora-
tion tasks

• Demonstration of strong generalization capabilities to unseen degra-
dation combinations

• A flexible and open-source framework that restores speech audio to
high-quality 24kHz

2 Related Work

2.1 Speech Enhancement and Dereverberation

Traditional approaches to speech enhancement and dereverberation often
rely on signal processing techniques such as spectral subtraction or Wiener
filtering [3]. More recently, deep learning and diffusion methods have shown
significant improvements, with architectures like SEGAN [4], DCCRN [5]
and SGMSE+ [1] achieving state-of-the-art results for noise reduction and
dereverberation tasks.

2.2 Flow Matching and Conditional Generation

Flow matching provides an alternative framework for generative modeling,
offering advantages in terms of training stability and sampling efficiency.
Recent work has extended flow matching to conditional generation tasks [6],
opening up new possibilities for audio processing applications.
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2.3 E2TTS and Zero-Shot Audio Generation

The recently introduced E2TTS framework [2] demonstrated impressive re-
sults in zero-shot text-to-speech synthesis using flow matching and trans-
former architectures. Our work adapts this approach to audio restoration,
replacing the text input with degraded audio and learning a mapping to
high-quality audio.

3 Proposed Method

3.1 Problem Formulation

Let x ∈ RT×F be a clean audio spectrogram, where T is the number of time
frames and F is the number of frequency bins. We consider a degraded
version y generated through various forms of audio degradation. Our goal is
to learn a restoration function fθ(y) that estimates the clean audio x̂ given
the degraded input y.

3.2 Flow Matching for Audio Restoration

We adopt a conditional flow matching framework for our audio restoration
task. The key idea is to learn a vector field vθ(xt, t, y) that describes the
gradual transformation of degraded to clean audio, conditioned on the de-
graded input y. The flow matching objective is given by:

L(θ) = Et,x0,x1

[
∥ut(xt|x0, x1)− vθ(xt, t, y)∥22

]
(1)

where ut is the ground truth vector field derived from the optimal trans-
port path between the degraded and clean audio distributions.

In our implementation, we use a Gaussian distribution for initial sam-
pling of x0, while x1 represents the clean audio. We create an interpolation
w between x0 and x1 based on a randomly sampled time t:

w = (1− (1− σ) · t) · x0 + t · x1 (2)

where σ is a small constant to prevent singularities. This interpolated w
serves as the input to our transformer model.

3.3 Self-Supervised Learning with Real-Time Degradation

A key innovation in our approach is the use of self-supervised learning with
real-time degradation generation. Instead of relying on a fixed dataset of
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degraded audio samples, we implement a custom algorithm that applies
degradations on-the-fly during training. This algorithm combines optimized
NumPy acoustic noise generation functions with VST (Virtual Studio Tech-
nology) plugins to create a wide range of realistic audio degradations.

The real-time degradation process allows for:

• Dynamic generation of diverse degradation combinations

• Fine-grained control over degradation parameters

• Unlimited training data without the need for extensive pre-processing
or storage

• Improved generalization to unseen degradation types and severities

By integrating this approach into our training pipeline, we ensure that
the model is exposed to a constantly changing set of degradation scenarios,
promoting robust learning and adaptation.

3.4 Transformer Architecture

Our model employs a transformer architecture with several key modifica-
tions:

1. Conditioning: We use the degraded audio y as conditioning infor-
mation. It is projected through a linear layer and added to the main input
w.

2. Time Embedding: The sampled time t is embedded and used to
condition the transformer layers, allowing the model to learn time-dependent
transformations.

3. Skip Connections: We implement U-Net style skip connections to
preserve fine-grained information across the network.

4. Attention Mechanisms: We use a combination of self-attention
and gated attention mechanisms to capture complex dependencies in the
audio data.

3.5 Training Procedure

During training, we:
1. Sample a random time t for each element in the batch. 2. Create

the interpolated input w between Gaussian noise and the clean audio. 3.
Compute the ground truth flow as the difference between clean and noisy
inputs. 4. Pass w through the transformer, conditioned on the degraded
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audio and time t. 5. Compute the loss between the predicted flow and the
ground truth flow.

This procedure allows the model to learn the transformation from noisy
to clean audio at various interpolation points.

3.6 Sampling Process

For inference, we use an ODE solver to generate the restored audio. Start-
ing from Gaussian noise, we iteratively apply the learned vector field, con-
ditioned on the degraded input. This process can be described as:

dx

dt
= vθ(x, t, y) (3)

We solve this ODE using a numerical solver (e.g., Runge-Kutta methods)
to obtain the final restored audio.

3.7 Classifier-Free Guidance

To enhance the quality of generated samples, we implement classifier-free
guidance. During sampling, we compute:

v̂ = vθ(x, t, y) + λ(vθ(x, t, y)− vθ(x, t, ∅)) (4)

where λ is the guidance strength and vθ(x, t, ∅) represents the uncondi-
tional prediction. This technique allows for controlled generation and can
improve the fidelity of the restored audio.

3.8 Degradation Generation

Our custom degradation algorithm utilizes a combination of techniques:

• NumPy-based noise generation: We implement efficient functions
for generating various types of noise (e.g., white noise, pink noise,
brown noise) using NumPy.

• VST plugin integration: We incorporate VST plugins for more
complex degradations such as reverberation, compression, and equal-
ization. These plugins are controlled programmatically to apply ran-
domized degradation parameters.

• Real-time processing: Degradations are applied on-the-fly during
training, ensuring a unique degradation profile for each training sam-
ple.
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Figure 1: Degraded Input

Figure 2: Predicted Output

This approach allows us to generate an unlimited variety of degraded
audio samples, closely mimicking real-world scenarios and enhancing the
model’s generalization capabilities.

4 Conclusions and Future Work

In this paper, we presented a unified approach to audio quality restoration
using flow-matching transformers. Our method demonstrates state-of-the-
art performance across a wide range of degradation types, including rever-
beration, noise, compression artifacts, and low sampling rate issues. The
proposed model shows strong generalization capabilities, effectively han-
dling unseen combinations of degradations. To foster further research and
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Figure 3: Ground Truth

development in this area, we are open-sourcing our model:

• A 301 million parameter transformer, which represents our full-scale
model with state-of-the-art performance.

These model, along with pre-trained weights and example code, will be
made available on our GitHub repository, enabling researchers and practi-
tioners to build upon our work and apply it to various audio restoration
tasks.

Future work could explore:

• Extension to real-time processing for live audio applications

• Incorporation of perceptual loss functions to further improve subjec-
tive quality

• Application to other audio domains, such as music restoration or en-
vironmental sound enhancement

• Development of even more efficient model architectures while main-
taining high restoration quality

• Further exploration of self-supervised learning techniques, including
more advanced real-time degradation algorithms and adaptive diffi-
culty scaling based on model performance

We believe that by open-sourcing our models, we can accelerate progress
in the field of audio quality restoration and encourage innovative applications
across various domains.
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